
Jaffle Documentation
Release 0.2.1

Jaffle Development Team

May 21, 2018

User Documentation

1 Screenshot 3
1.1 Installation . 3
1.2 Commands . 4
1.3 Configuration . 8
1.4 Jaffle Apps . 19
1.5 Cookbook . 24
1.6 Troubleshooting . 33
1.7 Version History . 34
1.8 Related Work . 34
1.9 Developers Guide . 35
1.10 API . 35

2 Source Code 37

3 Bugs/Requests 39

4 License 41

5 Indices and tables 43

Python Module Index 45

i

ii

Jaffle Documentation, Release 0.2.1

Jaffle is an automation tool for Python software development, which has the following features:

• Instantiate Python applications in a Jupyter kernel and allows them to interact each other

• Launch external processes

• Combine all log messages and allows filtering and reformatting by regular expressions and functions

• Built-in WatchdogApp watches filesystem events and triggers another app, arbitrary code, and functions, which
make it possible to setup various automations.

User Documentation 1

https://jupyter.org/

Jaffle Documentation, Release 0.2.1

2 User Documentation

CHAPTER 1

Screenshot

Fig. 1: Developing a single-page web app using Tornado and React

Warning: Jaffle is intended to be a development tool and does not care much about security. Arbitrary Python
code can be executed in jaffle.hcl and you should not use it as a part of production environment. jaffle.
hcl is like a Makefile or a shell script included in a source code repository.

1.1 Installation

1.1.1 Prerequisite

• UNIX-like OS

– Windows is not supported

• Python >= 3.4

• Jupyter Notebook >= 5.0

• Tornado >= 4.5, < 5

Jupyter Notebook and Tornado will be installed automatically if they do not exist in your environment. Tornado 5 is
not yet supported.

1.1.2 Installation

$ pip install jaffle

You will also probably need pytest:

3

http://www.tornadoweb.org/
https://reactjs.org/
https://jupyter.org/
http://www.tornadoweb.org/

Jaffle Documentation, Release 0.2.1

$ pip install pytest

1.2 Commands

Jaffle consists of the following commands:

1.2.1 jaffle start

Starts Jaffle.

Type ctrl-c to stop it.

Usage

jaffle start [options] [conf_file, ...]

The default value for conf_file is "jaffle.hcl".

If multiple config files are provided, they will be merged into one configuration.

Options

• –debug

Set log level to logging.DEBUG (maximize logging output)

• -y

Answer yes to any questions instead of prompting.

• –disable-color

Disable color output.

• –log-level=<Enum> (Application.log_level)

Default: 30

Choices: (0, 10, 20, 30, 40, 50, ‘DEBUG’, ‘INFO’, ‘WARN’, ‘ERROR’, ‘CRITICAL’) Set the log
level by value or name.

• –log-datefmt=<Unicode> (Application.log_datefmt)

Default: ‘%Y-%m-%d %H:%M:%S’

The date format used by logging formatters for %(asctime)s

• –log-format=<Unicode> (Application.log_format)

Default: ‘%(time_color)s%(asctime)s.%(msecs).03d%(time_color_end)s
%(name_color)s%(name)14s%(name_color_end)s %(level_color)s %(levelname)1.1s
%(level_color_end)s %(message)s’

The Logging format template

• –runtime-dir=<Unicode> (BaseJaffleCommand.runtime_dir) Default: ‘.jaffle’

Runtime directory path.

4 Chapter 1. Screenshot

Jaffle Documentation, Release 0.2.1

• –variables=<List> (JaffleStartCommand.variables)

Default: []

Value assignments to the variables.

Merging Multiple Configurations

If you provide multiple configuration files, Jaffle read the first file and then merges the rest one by one. Maps are
merged deeply and other elements are overwritten.

Given that we have the following three configurations.

a.hcl:

process "server" {
command = "start_server"
env = {
FOO = 1

}
}

b.hcl:

process "server" {
command = "start_server"
env = {
BAR = 2

}
}

c.hcl:

process "server" {
command = "start_server"
env = {
FOO = 4
BAZ = 3

}
}

When we start Jaffle by typing jaffle start a.hcl b.hcl c.hcl, the configuration will be as below:

process "server" {
command = "start_server"
env = {
FOO = 4
BAR = 2
BAZ = 3

}
}

Resolved variables are passed to the later configurations. Given that we have the following two configurations and use
them as jaffle start a.hcl b.hcl.

a.hcl:

1.2. Commands 5

Jaffle Documentation, Release 0.2.1

variable "server_command" {
default = "start_server"

}

variable "disable_server" {
default = false

}

process "server" {
command = "${var.server_command}"
disabled = "${var.disable_server}"

}

b.hcl:

variable "disable_server" {
default = true # switch the default value to true

}

process "server" {
command = "${var.server_command} --debug"

}

The configurations will be merged as follows:

variable "server_command" {
default = "start_server"

}

variable "disable_server" {
default = true

}

process "server" {
command = "${var.server_command} --debug"
disabled = "${var.disable_server}"

}

Tip: The configuration merging is useful when you have a default configuration in your repository and you want to
overwrite some part of it.

Example:

$ jaffle start jaffle.hcl debug.hcl log_filter.hcl

1.2.2 jaffle stop

Stops the running Jaffle process. If it is not running, removes runtime files if they exist.

Usage

jaffle stop [options]

6 Chapter 1. Screenshot

Jaffle Documentation, Release 0.2.1

Options

• –runtime-dir=<Unicode> (BaseJaffleCommand.runtime_dir)

Default: ‘.jaffle’

Runtime directory path.

1.2.3 jaffle console

Opens an interactive shell and attaches to the specified kernel instance.

Type ctrl-c or ctrl-d to stop it.

Usage

jaffle console <kernel_instance_name> [options]

The default value for conf_file is "jaffle.hcl".

Options

• –debug

Set log level to logging.DEBUG (maximize logging output)

• -y

Answer yes to any questions instead of prompting.

• –disable-color

Disable color output.

• –log-level=<Enum> (Application.log_level)

Default: 30

Choices: (0, 10, 20, 30, 40, 50, ‘DEBUG’, ‘INFO’, ‘WARN’, ‘ERROR’, ‘CRITICAL’) Set the log
level by value or name.

• –log-datefmt=<Unicode> (Application.log_datefmt)

Default: ‘%Y-%m-%d %H:%M:%S’

The date format used by logging formatters for %(asctime)s

• –log-format=<Unicode> (Application.log_format)

Default: ‘%(time_color)s%(asctime)s.%(msecs).03d%(time_color_end)s
%(name_color)s%(name)14s%(name_color_end)s %(level_color)s %(levelname)1.1s
%(level_color_end)s %(message)s’

The Logging format template

• –runtime-dir=<Unicode> (BaseJaffleCommand.runtime_dir) Default: ‘.jaffle’

Runtime directory path.

1.2. Commands 7

Jaffle Documentation, Release 0.2.1

1.2.4 jaffle attach

Opens an interactive shell and attaches to the specified app. The app must support attaching. Only PyTestRunnerApp
supports this.

Type ctrl-c or ctrl-d to stop it.

Usage

jaffle attach <app> [options]

Options

• –debug

Set log level to logging.DEBUG (maximize logging output)

• -y

Answer yes to any questions instead of prompting.

• –disable-color

Disable color output.

• –log-level=<Enum> (Application.log_level)

Default: 30

Choices: (0, 10, 20, 30, 40, 50, ‘DEBUG’, ‘INFO’, ‘WARN’, ‘ERROR’, ‘CRITICAL’) Set the log
level by value or name.

• –log-datefmt=<Unicode> (Application.log_datefmt)

Default: ‘%Y-%m-%d %H:%M:%S’

The date format used by logging formatters for %(asctime)s

• –log-format=<Unicode> (Application.log_format)

Default: ‘%(time_color)s%(asctime)s.%(msecs).03d%(time_color_end)s
%(name_color)s%(name)14s%(name_color_end)s %(level_color)s %(levelname)1.1s
%(level_color_end)s %(message)s’

The Logging format template

• –runtime-dir=<Unicode> (BaseJaffleCommand.runtime_dir) Default: ‘.jaffle’

Runtime directory path.

1.3 Configuration

Note: Currently Jaffle does not check the configuration file syntax. If Jaffle does not work as you expect, please check
the configuration carefully. Jaffle will have the configuration validation in the future release.

8 Chapter 1. Screenshot

Jaffle Documentation, Release 0.2.1

1.3.1 Syntax

Configuration Syntax

The configuration language of jaffle.hcl is HCL (HashiCorp Configuration Language).

The top-level of the configuration can have the following items:

• kernel

• app

• process

• job

• logger

• variable

Example

kernel "py_kernel" {}

app "watchdog" {
class = "jaffle.app.watchdog.WatchdogApp"
kernel = "py_kernel"

logger {
level = "info"

}

options {
handlers = [{

watch_path = "my_module"
patterns = ["*.py"]
ignore_directories = true
functions = ["pytest.handle_watchdog_event({event})"]

}]
}

}

app "pytest" {
class = "jaffle.app.pytest.PyTestRunnerApp"
kernel = "py_kernel"

logger {
level = "info"

}

options {
args = ["-s", "-v", "--color=yes"]

auto_test = [
"my_module/tests/test_*.py",

]

auto_test_map {

(continues on next page)

1.3. Configuration 9

https://github.com/hashicorp/hcl

Jaffle Documentation, Release 0.2.1

(continued from previous page)

"my_module/**/*.py" = "my_module/tests/{}/test_{}.py"
}

}
}

JSON

Since JSON is a valid HCL, you can also write the configuration file as JSON. The previous HCL example is same as
the following JSON.

{
"kernel": {
"py_kernel": {}

},
"app": {
"watchdog": {

"class": "jaffle.app.watchdog.WatchdogApp",
"kernel": "py_kernel",
"logger": {
"level": "info"

},
"options": {
"handlers": [
{
"watch_path": "my_module",
"patterns": [
"*.py"

],
"ignore_directories": true,
"functions": [

"pytest.handle_watchdog_event({event})"
]

}
]

}
},
"pytest": {
"class": "jaffle.app.pytest.PyTestRunnerApp",
"kernel": "py_kernel",
"logger": {

"level": "info"
},
"options": {
"args": [
"-s",
"-v",
"--color=yes"

],
"auto_test": [
"my_module/tests/test_*.py"

],
"auto_test_map": {
"my_module/**/*.py": "my_module/tests/{}/test_{}.py"

}
}

(continues on next page)

10 Chapter 1. Screenshot

Jaffle Documentation, Release 0.2.1

(continued from previous page)

}
}

}

Interpolation Syntax

Jaffle configuration supports interpolation syntax wrapped by ${}. You can get environment varialbes, call functions,
and execute Python code in it:

Example:

${'hello'.upper()}

The above produces 'HELLO'.

Environment Variables

All environment variables consist of alphanumeric uppercase characters are available in the interpolation syntax.

Example:

${HOME}/etc

The above produces /home/your_account/etc if your HOME is '/home/your_account'.

If you need a default value for an environment variable, use env() function instead.

Variables

Defined variables can be embedded with ${var.name} syntax in arbitrary HCL value part.

Example:

disabled = "${var.enable_debug}"

See variable section for details.

Functions

env()

env(name, default=”)
Gets an environment variable.

Parameters

• name (str) – Environment variable name.

• default (str) – Default value.

Returns env – Value of the environment variable.

Return type str

1.3. Configuration 11

Jaffle Documentation, Release 0.2.1

exec()

exec(command)
Executes a command and returns the result of it.

Parameters command (str) – Command name and arguments separated by whitespaces.

Returns result – Result of the command.

Return type str

fg()

fg(color)
Inserts the escape sequence of the foreground color.

Available colors are ‘black’, ‘red’, ‘green’, ‘yellow’, ‘blue’, ‘magenta’, ‘cyan’, ‘white’, ‘bright_black’,
‘bright_red’, ‘bright_green’, ‘bright_yellow’, ‘bright_blue’ , ‘bright_magenta’, ‘bright_cyan’ and
‘bright_white’.

Parameters color (str) – Foreground color in str (e.g. ‘red’).

Returns seq – Escape sequence of the foreground color.

Return type str

Raises ValueError – Invalid color name.

bg()

bg(color)
Inserts the escape sequence of the background color.

Available colors are ‘black’, ‘red’, ‘green’, ‘yellow’, ‘blue’, ‘magenta’, ‘cyan’, ‘white’, ‘bright_black’,
‘bright_red’, ‘bright_green’, ‘bright_yellow’, ‘bright_blue’ , ‘bright_magenta’, ‘bright_cyan’ and
‘bright_white’.

Parameters color (str) – Background color in str (e.g. ‘red’).

Returns seq – Escape sequence of the background color.

Return type str

Raises ValueError – Invalid color name.

reset()

reset()
Inserts the escape sequence of display reeet.

Returns seq – Escape sequence of display reeet.

Return type str

12 Chapter 1. Screenshot

Jaffle Documentation, Release 0.2.1

jq_all()

jq_all(query, data_str, *args, **kwargs)
Queries the nested data and returns all results as a list.

Parameters data_str (str) – Nested data in Python dict’s representation format. If must be
loadable by yaml.safe_load().

Returns result – String representation of the result list.

Return type str

pyjq processes the query. jq() is an alias to jq_all().

jq_first()

jq_first(query, data_str, *args, **kwargs)
Queries the nested data and returns the first result.

Parameters data_str (str) – Nested data in Python dict’s representation format. If must be
loadable by yaml.safe_load().

Returns result – String representation of the result object.

Return type str

pyjq processes the query. jqf() is an alias to jq_first().

Filters

The | operator can be used in a ${} expression to apply filters.

Example:

${'hello world' | u}

The u filter applies URL escaping to the string, and produces 'hello+world'.

To apply more than one filter, separate them by a comma:

${' hello world ' | trim,u}

The above produces 'hello+world'.

Available Filters

u URL escaping.

${"hello world" | x} => 'hello+world'

h HTML escaping.

${"hello world" | x} => 'hello world'

x XML escaping.

${"hello world" | x} => 'hello world'

1.3. Configuration 13

https://github.com/doloopwhile/pyjq
https://github.com/doloopwhile/pyjq

Jaffle Documentation, Release 0.2.1

trim Whitespace trimming.

${" hello world " | x} => 'hello world'

entity Produces HTML entity references for applicable strings.

${"→" | entit} => '→'

1.3.2 Configuration Blocks

kernel

Example

The kernel block defines a kernel instance name and configures the kernel.

kernel "py_kernel" {
kernel_name = "python3"
pass_env = ["PATH", "HOME"]

}

Description

• kernel_name (str | optional | default: "")

kernel_name is a Jupyter kernel name. You can install multiple kernels and switch them by
specifying kernel_name. If it is not specified, the default kernel will be launched. The kernel must
be IPython kernel and the Python version must be greater than or equal to 3.4. See also Installing the
IPython kernel in the IPython document.

• pass_env ([str] | optional | default: [])

pass_env defines environment variables which will be passed to the kernel. Jaffle itself has the
environment variables defined in your environment, but the kernel will be launched as an independent
process and the environment variables are not passed by default.

Tip: If the kernel executes a Python console script in a virtualenv, you will have to pass PATH
environment variable to the kernel.

app

The app block configures a Jaffle app which will be launched in a kernel. The name next to app keyword will be
the variable name in the kernel and will be accessed from other configuration blocks. The name must be valid in an
IPython kernel.

Example

app "pytest" {
class = "jaffle.app.pytest.PyTestRunnerApp"
kernel = "py_kernel"

(continues on next page)

14 Chapter 1. Screenshot

https://github.com/ipython/ipykernel
https://ipython.readthedocs.io/en/stable/install/kernel_install.html
https://ipython.readthedocs.io/en/stable/install/kernel_install.html

Jaffle Documentation, Release 0.2.1

(continued from previous page)

options {
args = ["-s", "-v", "--color=yes"]

auto_test = [
"my_module/tests/test_*.py",

]

auto_test_map {
"my_module/**/*.py" = "my_module/tests/{}/test_{}.py"

}
}

}

Description

• class (str | required)

The class name of the Jaffle app. It must begin with the top-level module name. e.g.: "jaffle.
app.pytest.PyTestRunnerApp".

• kernel (str | required)

The kernel in which the app is instantiated. The specified kernel must be defined in a kernel block.

• start (str | optional | default: null)

Python code to be executed just after the app is instanticated in a kernel.

• logger (logger | optional | default: {})

The app logger configuration.

• options (map | optional | default: {})

options will be passed to the app initializer (__init__() method) as keyword arguments. The
format of options depends on each app.

process

The process block configures an external process. The output to stdout and stderr are redirected to the logger
with level info and warning respectively.

Example

process "webdev" {
command = "yarn start"
tty = true

env {
BROWSER = "none"

}
}

1.3. Configuration 15

Jaffle Documentation, Release 0.2.1

Description

• command (str | required)

The command and arguments separated by whitespaces.

• tty (bool | optional | default: false)

Whether to enable special care for a TTY application. Some applications require a foreground TTY
access and/or send escape sequences aggressively. When tty is true, Jaffle runs the process via
Pexpect and filters the output. Font style sequences are still available but all other escape sequences
will be dropped. Try this option if your command does not work or makes the log output collapse.

• env (map | optional | default: {})

The environment variables to be passed to the process.

• logger (logger | optional | default: {})

The process logger configuration.

job

The job block configures a job which can be executed from a Jaffle app.

Example

job "sphinx" {
command = "sphinx-build -M html docs docs/_build"

}

Here is an WatchdogApp configuration which executes the job:

app "watchdog" {
class = "jaffle.app.watchdog.WatchdogApp"
kernel = "py_kernel"

options {
handlers = [

{
patterns = ["*/my_module/*.py", "*/docs/*.*"]
ignore_patterns = ["*/_build/*"]
ignore_directories = true
jobs = ["sphinx"]

},
]

}
}

Description

• command (str | required)

The command and arguments separated by whitespaces.

• logger (logger | optional | default: {})

16 Chapter 1. Screenshot

https://pexpect.readthedocs.io/en/stable/

Jaffle Documentation, Release 0.2.1

The job logger configuration.

Jaffle Apps

Only WatchdogApp supports executing jobs.

logger

The logger block configures log suppressing and replacing rules by regular expressions. logger is available in the
root, app and process blocks. The root logger configures the global rules which are applied after each app- or
process-level rule.

Example

logger {
suppress_regex = ["^\\s*$"] # drop empty line
replace_regex = [
{

from = "(some_keyword)"
to = "\033[31m\\1\033[0m" # red color

},
]

}

Description

• name (str | optional | default: <object name>)

The logger name. The root logger does not have this.

Note: Each logger should have a unique logger name. If multiple loggers of apps, process or jobs
have the same logger name, level, suppress_regex, etc. are overwritten multiple times and
the last configuration takes effect. That may not be the expected behavior.

• level (str | optional | default: 'info')

The logger level. Log messages are filtered by this level. Available levels are ‘critical’, ‘error’,
‘warning’, ‘info’ and ‘debug’. See Python logging reference for more information.

• suppress_regex ([str] | optional | default: [])

Regular expression patterns to suppress log messages. If one of the patterns matches the log message,
the message will be omitted.

• replace_regex ([{“from”: str, “to”: str}] | optional | default: [])

The matched groups can be used in to string as \\1, \\2, and so on. Note that \ (backslash) must
be escaped by an extra \, such as \\n.

Tip: replace_regex is especially useful to emphasize keywords on debugging like the example
below.

1.3. Configuration 17

Jaffle Documentation, Release 0.2.1

variable

The variable block defines a variable which will be used in another blocks. The variables can be set from environ-
ment variables (J_VAR_name=value) or the command argument (--variables='["name=value"]').

Example

variable "disable_frontend" {
type = "bool"
default = false

}

process "frontend" {
command = "yarn start"
tty = true
disabled = "${var.disable_frontend}"

}

Description

• type (str | optional | default: undefined)

The type of the variable. Available types are ‘str’, ‘bool’, ‘int’, ‘float’, ‘list’ and ‘dict’.

• default (object | optional | default: undefined)

The default value of the variable. If it is not defined, the value must be provided at runtime from an
environment variable or the command-line argument.

If type is not provided, it will be inferred based on default. If default is not provided, it is assumed to be str.

Embedding Variables

The variable embedding can be used only in a string:

disabled = "${var.disable_frontend}" # OK

It cannot be used outside of a string even though the target attribute requires bool or int because it is not a valid HCL:

disabled = ${var.disable_frontend} # NG

In Jaffle, the following strings can be treated as boolean values:

• 'true' and '1' => true

• 'false' and '0' => false

disabled = false

Setting Variables

Your can set values to the variables from environment variables (J_VAR_name=value) or the command argument
(--variables='["name=value"]').

18 Chapter 1. Screenshot

https://github.com/hashicorp/hcl

Jaffle Documentation, Release 0.2.1

Example: Setting true to disable_frontend from an environment variable:

$ J_VAR_disable_frontend=true jaffle start

Example: Setting true to disable_frontend from the command-line argument:

$ jaffle start --variables='["disable_frontend=true"]'

1.4 Jaffle Apps

1.4.1 Built-in Apps

WatchdogApp

WatchdogApp launches Watchdog handlers with given patterns and callback code blocks. Since Jaffle is initially
designed to be an automation tool, WatchdogApp is regarded as the central app among other Jaffle apps.

Watchdog is a Python API library and shell utilities to monitor file system events.

Example Configuration

app "watchdog" {
class = "jaffle.app.watchdog.WatchdogApp"
kernel = "py_kernel"

options {
handlers = [{

patterns = ["*.py"]
ignore_patterns = ["*/tests/*.py"]
ignore_directories = true
functions = ["pytest.handle_watchdog_event({event})"]

}]
}

}

Options

• handlers (list[dict] | optional | default: [])

Watchdog handler definitions. The dict format is described below.

Handler dict Format

• watch_path (str | optional | default: current_directory)

The directory to be watched by the handler. Both absolute and relative paths are available.

• patterns (list[str] | optional | default: [])

The path matching patterns to execute handler code blocks and jobs. The pattern syntax is the same
as Python’s fnmatch. Since the Watchdog event has an absolute file path, you will probably need *
at the beginning of the pattern (e.g.: patterns = ["*/foo/*.py"]).

1.4. Jaffle Apps 19

https://pythonhosted.org/watchdog/
https://docs.python.org/3/library/fnmatch.html

Jaffle Documentation, Release 0.2.1

Note: The Watchdog pattern syntax and the PyTestRunner pattern syntax are difference from each
other. They may be changed to be identical in the future release.

• ignore_patterns (list[str] | optional | default: [])

The path matching patterns to be ignored. The pattern syntax is the same as patterns.

• ignore_directories (bool | optional | default: false)

Whether to ignore Watchdog events of directories.

• throttle (float | optional | default: 0.0)

The throttle time in seconds for event handling. When an event is handled, the event handling is
disabled until the throttle time passes by. If it is 0, the throttling is disabled.

• debounce (float | optional | default: 0.0)

The debounce time in seconds for event handling. The event will be handled only when the debounce
time has passed without receiving any other events. If it is 0, the debouncing is disabled.

Tip: Throttling and debouncing are useful when your editor or any other app does multiple file-
system operations at once. For example, when you save a file in an editor, the editor may write the
file twice to do auto-formatting. In this case, two events are going to be handled each time you save
a file and you might want to handle the event only once. throttle and debounce come into play
in this situation.

• code_blocks (list[str] | optional | default: [])

The code blocks to be executed by the handler.

• jobs (list[str] optional | default: [])

The jobs to be executed by the handler. Jobs must be defined in job blocks.

• clear_cache (list[str] | optional | default: <modules found under the current directory>)

The module names which will be removed from the module cache (sys.modules) before execut-
ing handler code blocks.

Integration with Other Apps

WatchdogApp handler executes Python code written in code_blocks, with replacing the interpolation keyword
{event} with an watchdog.events.FileSystemEvent object.

Example:

code_blocks = ["pytest.handle_watchdog_event({event})"]

PyTestRunnerApp and TornadoBridgeApp has handle_watchdog_event() to handle the Watchdog event.

PyTestRunnerApp

PyTestRunnerApp runs pytest on receiving Watchdog events sent from WatchdogApp. That works very fast because
PyTestRunnerApp runs pytest as a Python function in a Jupyter kernel process instead of executing the external py.
test command, and it also keeps cache of imported modules which do not require reloading.

20 Chapter 1. Screenshot

https://pythonhosted.org/watchdog/api.html#watchdog.events.FileSystemEvent
https://pytest.org/
https://pytest.org/

Jaffle Documentation, Release 0.2.1

PyTestRunnerApp also has the interactive shell which allows you to run tests interactively.

Example Configuration

app "pytest" {
class = "jaffle.app.pytest.PyTestRunnerApp"
kernel = "py_kernel"

options {
args = ["-s", "-v", "--color=yes"]

auto_test = [
"jaffle_tornado_spa_example/tests/test_*.py",

]

auto_test_map {
"jaffle_tornado_spa_example/**/*.py" = "jaffle_tornado_spa_example/tests/{}/

→˓test_{}.py"
}

}
}

Optionns

• args (list[str] | optional | default: [])

The pytest arguments.

• auto_test

The file path patterns to be executed by pytest. The pattern syntax is the same as shell glob but
supports only * and **. * matches arbitrary characters except for / (slash), whereas ** matches all
characters.

• auto_test_map

The file path patterns map to determine test files to be executed. If the event path matches to the
left-hand-side pattern, the files which match the right-hand-side will be executed. The pattern syntax
is the same as auto_test. The strings matched to * or ** in the left-hand-side will be expanded
into {} in the right-hand-side one by one.

Tip: It is recommended to create a Python implimentation file and a unit test file to have one-to-one
correspondence to each other. That makes easy to setup auto_test_map.

If you editor supports jumping to alternative file like vim-projectionist, it also helps a lot.

• clear_cache (list[str] | optional | default: <modules found under the current directory>)

The module names which will be removed from the module cache (sys.modules) before restart-
ing the app. If it is not provided, TornadoBridgeApp searches modules by calling setuptools.
find_packages(). Note that the root Python module must be in the current working directory to
be found by TornadoBridgeApp. If it is included in a sub-directory, you must specify clear_cache
manually.

1.4. Jaffle Apps 21

https://github.com/tpope/vim-projectionist

Jaffle Documentation, Release 0.2.1

Interactive Shell

You can use an interactive shell which attaches the session to PyTestRunnerApp running in a Jupyter kernel.

Example:

$ jaffle attach pytest

You can type test case names with auto-completion. The tests are executed in the Jupyter kernel.

TornadoBridgeApp

TornadoBridgeApp manages a Tornado application in IPython kernels running in a Jaffle.

Example Configuration

app "tornado_app" {
class = "jaffle.app.tornado.TornadoBridgeApp"
kernel = "py_kernel"
start = "tornado_app.start()"

logger {
level = "info",

}

options {
app_class = "my_module.app.ExampleApp"
argv = ["--port=9999"]
threaded = true
clear_cache = ["my_module"]

}
}

Options

• app_class (str | required | default: undefined)

The Tornado application class to be launched in a kernel. It must be a fully qualified class name
which begins from the top module name joined with ., e.g. foo.bar.BazApp.

• argv (list[str] | optional | default: [])

The arguments to the Tornado application. They will be passed directly to __init__() of the
class.

• threaded (bool | optional | default: false)

Whether to launch the app in an independent IO loop thread. Tornado applications can basically be
launched in the main thread and share the IO loop with other apps and the Jaffle itself. However,
some apps cannot dispose all running functions from the IO loop and that makes troubles on calling
start() and stop() several times, because the remaining functions may cause errors. When
threaded is true, the app uses its own IO loop which will be stopped together with the app itself.

• clear_cache (list[str] | optional | default: <modules found under the current directory>)

22 Chapter 1. Screenshot

Jaffle Documentation, Release 0.2.1

The module names which will be removed from the module cache (sys.modules) before restart-
ing the app. If it is not provided, TornadoBridgeApp searches modules by calling setuptools.
find_packages(). Note that the root Python module must be in the current working directory to
be found by TornadoBridgeApp. If it is included in a sub-directory, you must specify clear_cache
manually.

Available Tornado Applications

TornadoBridgeApp assumes that the Tornado application has start() and stop() and they meet the following
requirements:

• start() gets the IOLoop by calling tornado.ioloop.IOLoop.current().

• IOLoop.start() is called only from start().

• IOLoop.stop() is called only from an IOLoop callback which is added by stop().

Example:

class ExampleApp(Application):

def start(self):
self.io_loop = ioloop.IOLoop.current()
try:

self.io_loop.start()
except KeyboardInterrupt:

self.log.info('Interrupt')

def stop(self):
def _stop():

self.http_server.stop()
self.io_loop.stop()

self.io_loop.add_callback(_stop)

They are required because Jaffle must protect the main IOLoop not to be terminated or overwritten by the app. If your
application cannot meet the requirements, you can create a custom Jaffle app inheriting TornadoBridgeApp.

Integration with WatchdogApp

TornadoBridgeApp.handle_watchdog_event() handles an Watchdog event sent from WatchdogApp. It
restarts the Tornado application.

Example WatchdogApp configuration:

app "watchdog" {
class = "jaffle.app.watchdog.WatchdogApp"
kernel = "py_kernel"

options {
handlers = [

{
patterns = ["*.py"]
ignore_directories = true
functions = ["my_app.handle_watchdog_event({event})"]

},
]

(continues on next page)

1.4. Jaffle Apps 23

Jaffle Documentation, Release 0.2.1

(continued from previous page)

}
}

app "my_app" {
class = "jaffle.app.tornado.TornadoBridgeApp"
kernel = "py_kernel"
start = "tornado_app.start()"

options {
app_class = "my_module.app.ExampleApp"

}
}

1.4.2 Custom Apps

You can create your own Jaffle app by inheriting BaseJaffleApp. See Developers Guide for more information.

1.5 Cookbook

1.5.1 Auto-testing with pytest

You can setup auto-testing by using WatchdogApp and PyTestRunnerApp.

Here is the example jaffle.hcl, which can be used by jaffle start.

1 kernel "py_kernel" {}
2

3 app "watchdog" {
4 class = "jaffle.app.watchdog.WatchdogApp"
5 kernel = "py_kernel"
6

7 options {
8 handlers = [{
9 watch_path = "pytest_example"

10 patterns = ["*.py"]
11 ignore_directories = true
12 code_blocks = ["pytest.handle_watchdog_event({event})"]
13 }]
14 }
15 }
16

17 app "pytest" {
18 class = "jaffle.app.pytest.PyTestRunnerApp"
19 kernel = "py_kernel"
20

21 options {
22 args = ["-s", "-v", "--color=yes"]
23

24 auto_test = [
25 "pytest_example/tests/test_*.py",
26]
27

28 auto_test_map {
(continues on next page)

24 Chapter 1. Screenshot

Jaffle Documentation, Release 0.2.1

(continued from previous page)

29 "pytest_example/**/*.py" = "pytest_example/tests/{}/test_{}.py"
30 }
31 }
32 }

• L1: Define the kernel py_kernel which is used by watchdog and pytest.

• L3-5: Create WatchdogApp with name watchdog in the kernel py_kernel.

• L9-11: Let Watchdog watch the directory pytest_example with provided patterns.

• L12: When an event comes, the handler executes this code block. The variable pytest is an app created later
(L17).

• L17-19: Define PyTestRunnerApp with name pytest in the kernel py_kernel.

• L24-26: When pytest_example/tests/test_*.py is modified, pytest executes it.

• L28-30: When pytest_example/**/*.py is modified, pytest executes the file matched to the pattern
pytest_example/tests/{}/test_{}.py.

Interactive Shell

You can also use the interactive shell which attaches the session to the running pytest instance:

$ jaffle attach pytest

When you hit t TAB /, test cases are auto-completed.

Screenshot

Note: The source package of Jaffle contains example projects in examples directory. You can see the latest version
of them here: https://github.com/yatsu/jaffle/tree/master/examples

A pytest example is here: https://github.com/yatsu/jaffle/tree/master/examples/pytest

1.5.2 Automatic Sphinx Document Build

Here is a simple example which generates a Sphinx document on detecting *.rst update. It assumes .rst files are
stored in docs directory and the result HTML will be stored in docs/_build.

jaffle.hcl:

1 kernel "py_kernel" {
2 pass_env = ["PATH"] # required to run sphinx-build in virtualenv
3 }
4

5 app "watchdog" {
6 class = "jaffle.app.watchdog.WatchdogApp"
7 kernel = "py_kernel"
8

9 options {

(continues on next page)

1.5. Cookbook 25

https://github.com/gorakhargosh/watchdog
https://pytest.org/
https://pytest.org/
https://github.com/yatsu/jaffle/tree/master/examples
https://github.com/yatsu/jaffle/tree/master/examples/pytest

Jaffle Documentation, Release 0.2.1

(continued from previous page)

10 handlers = [{
11 patterns = ["*/docs/*.*"]
12 ignore_patterns = ["*/_build/*"]
13 ignore_directories = true
14 jobs = ["sphinx"]
15 }]
16 }
17 }
18

19 job "sphinx" {
20 command = "sphinx-build -M html docs docs/_build"
21 }

• L1-3: Define the kernel py_kernel which is used by watchdog and pytest. You need to pass PATH
environment variable if sphinx-build is installed in a virtualenv.

• L5-7: Create WatchdogApp with name watchdog in the kernel py_kernel.

• L10-13: Let Watchdog_ watch the directory pytest_example with provided patterns.

• L14: When an event comes, the handler executes the job sphinx which will be defined later (L19-21)

• L19-21: Define sphinx job to execute sphinx-build

Note: Ignoreing _build directory is important (L12 of the above example). If you forget that, sphinx job updates
_build directory and that triggers sphinx job again. That will be an infinite loop.

Refreshing Browser

Here is another example on macOS which also refreshes Google Chrome’s current tab on detecting file updates.

1 kernel "py_kernel" {
2 pass_env = ["PATH"]
3 }
4

5 app "watchdog" {
6 class = "jaffle.app.watchdog.WatchdogApp"
7 kernel = "py_kernel"
8

9 options {
10 handlers = [{
11 patterns = ["*/docs/*.*"]
12 ignore_patterns = ["*/_build/*"]
13 ignore_directories = true
14 jobs = [
15 "sphinx",
16 "chrome_refresh",
17]
18 }]
19 }
20 }
21

22 job "sphinx" {
23 command = "sphinx-build -M html docs docs/_build"
24 }

(continues on next page)

26 Chapter 1. Screenshot

Jaffle Documentation, Release 0.2.1

(continued from previous page)

25

26 job "chrome_refresh" {
27 command = "osascript chrome_refresh.scpt"
28 }

You also need the AppleScript file chrome_refresh.scpt in the current directory as below.

tell application "Google Chrome" to tell the active tab of its first window
reload

end tell

Tip: On Linux, maybe you can use xdotool to refresh your browser.

Note: The source package of Jaffle contains example projects in examples directory. You can see the latest version
of them here: https://github.com/yatsu/jaffle/tree/master/examples

Jaffle uses the above configuration to generate this Sphinx document: https://github.com/yatsu/jaffle/tree/master/jaffle.
hcl

1.5.3 Web Development with Tornado and React

This is an example Jaffle configuration for the web development which uses Tornado and React to build the back-end
API and the front-end web interface respectively.

It does:

• Launch the Tornado application including HTTP server

• Launch the Webpack dev server as an external process by executing yarn start

• Launch Jest as an external process by executing yarn test

• Restart the Tornado application when a related file is updated

• Execute pytest when a related file is updated

This page assumes that you have already know the basic configuration for a pytest. If not, please read the section
Auto-testing with pytest.

jaffle.hcl:

1 kernel "py_kernel" {}
2

3 app "watchdog" {
4 class = "jaffle.app.watchdog.WatchdogApp"
5 kernel = "py_kernel"
6

7 options {
8 handlers = [
9 {

10 watch_path = "tornado_spa"
11 patterns = ["*.py"]
12 ignore_patterns = ["*/tests/*.py"]
13 ignore_directories = true

(continues on next page)

1.5. Cookbook 27

http://www.semicomplete.com/projects/xdotool/
https://github.com/yatsu/jaffle/tree/master/examples
https://github.com/yatsu/jaffle/tree/master/jaffle.hcl
https://github.com/yatsu/jaffle/tree/master/jaffle.hcl
http://www.tornadoweb.org/
https://reactjs.org/
https://pytest.org/
https://pytest.org/

Jaffle Documentation, Release 0.2.1

(continued from previous page)

14 clear_cache = ["tornado_spa"]
15

16 code_blocks = [
17 "tornado_app.handle_watchdog_event({event})",
18 "pytest.handle_watchdog_event({event})",
19]
20 },
21 {
22 watch_path = "tornado_spa/tests"
23 patterns = ["*/test_*.py"]
24 ignore_directories = true
25 clear_cache = ["tornado_spa.tests"]
26

27 code_blocks = [
28 "pytest.handle_watchdog_event({event})",
29]
30 },
31]
32 }
33 }
34

35 app "tornado_app" {
36 class = "jaffle.app.tornado.TornadoBridgeApp"
37 kernel = "py_kernel"
38 start = "tornado_app.start()"
39

40 options {
41 app_class = "tornado_spa.app.ExampleApp"
42 args = ["--port=9999"]
43 clear_cache = []
44 }
45 }
46

47 app "pytest" {
48 class = "jaffle.app.pytest.PyTestRunnerApp"
49 kernel = "py_kernel"
50

51 options {
52 args = ["-s", "-v", "--color=yes"]
53

54 auto_test = [
55 "tornado_spa/tests/test_*.py",
56]
57

58 auto_test_map {
59 "tornado_spa/**/*.py" = "tornado_spa/tests/{}/test_{}.py"
60 }
61

62 clear_cache = []
63 }
64 }
65

66 process "frontend" {
67 command = "yarn start"
68 tty = true
69

70 env {
(continues on next page)

28 Chapter 1. Screenshot

Jaffle Documentation, Release 0.2.1

(continued from previous page)

71 BROWSER = "none"
72 }
73 }
74

75 process "jest" {
76 command = "yarn test"
77 tty = true
78 }

Clearing Module Cache

Since two applications tornado_app and pytest run in the same Jupyter kernel and share the same Python
modules in memory, you should manually configure the cache clear. By default TornadoBridgeApp and PyTestRun-
nerApp clear the modules found under the current directory on receiving an Watchdog event. That causes dupli-
cated cache clear on the same module. To prevent that, the configuration above has clear_cache = [] in
both tornado_app and pytest to disable cache clear and has clear_cache = ["tornado_spa"] in
watchdog to let WatchdogApp clear the module cache instead.

Note: If clear_cache configuration is incorrect, TornadoBridgeApp or PyTestRunnerApp may not reload Python
modules.

Screenshot

Note: The source package of Jaffle contains example projects in examples directory. You can see the latest version
of them here: https://github.com/yatsu/jaffle/tree/master/examples

A Tornado and React example is here: https://github.com/yatsu/jaffle/tree/master/examples/tornado_spa

1.5.4 Jupyter Extension Development

This page assumes that you have already know the basic configuration for a Tornado application. If not, please read
the section Web Development with Tornado and React.

To execute examples/jupyter_ext, you need to setup the Python project and install Jupyter serverextension and nbex-
tension first.

Example setup:

$ cd example/jupyter_ext
$ pip install -e .
$ jupyter serverextension install jupyter_myext --user
$ jupyter nbextension install jupyter_myext --user

Here is the Jaffle configuration.

jaffle.hcl:

1.5. Cookbook 29

https://github.com/yatsu/jaffle/tree/master/examples
https://github.com/yatsu/jaffle/tree/master/examples/tornado_spa
https://github.com/yatsu/jaffle/tree/master/examples/jupyter_ext

Jaffle Documentation, Release 0.2.1

1 kernel "py_kernel" {}
2

3 app "watchdog" {
4 class = "jaffle.app.watchdog.WatchdogApp"
5 kernel = "py_kernel"
6

7 options {
8 handlers = [
9 {

10 patterns = ["*.py"]
11 ignore_patterns = ["*/tests/*.py"]
12 ignore_directories = true
13 clear_cache = ["jupyter_myext"]
14

15 code_blocks = [
16 "notebook.handle_watchdog_event({event})",
17 "pytest.handle_watchdog_event({event})",
18]
19 },
20 {
21 patterns = ["*/tests/test_*.py"]
22 ignore_directories = true
23 clear_cache = ["jupyter_myext.tests"]
24

25 code_blocks = [
26 "pytest.handle_watchdog_event({event})",
27]
28 },
29 {
30 patterns = ["*.js"]
31 ignore_directories = true
32

33 code_blocks = [
34 "nbext_install.handle_watchdog_event({event})",
35]
36 },
37]
38 }
39 }
40

41 app "notebook" {
42 class = "jaffle.app.tornado.TornadoBridgeApp"
43 kernel = "py_kernel"
44

45 options {
46 app_class = "notebook.notebookapp.NotebookApp"
47

48 args = [
49 "--port=9999",
50 "--NotebookApp.token=''",
51]
52

53 clear_cache = []
54 }
55

56 start = "notebook.start()"
57 }

(continues on next page)

30 Chapter 1. Screenshot

Jaffle Documentation, Release 0.2.1

(continued from previous page)

58

59 app "pytest" {
60 class = "jaffle.app.pytest.PyTestRunnerApp"
61 kernel = "py_kernel"
62

63 options {
64 args = ["-s", "--color=yes"]
65

66 auto_test = [
67 "jupyter_myext/tests/test_*.py",
68]
69

70 auto_test_map {
71 "jupyter_myext/**/*.py" = "jupyter_myext/tests/{}/test_{}.py"
72 }
73

74 clear_cache = []
75 }
76 }
77

78 app "nbext_install" {
79 class = "jupyter_myext._devel.NBExtensionInstaller"
80 kernel = "py_kernel"
81 }

• L10-28: The handler configuration of pytest execution and Tornado restart, same as the example: Web Develop-
ment with Tornado and React.

• L29-36: The handler configuration to install nbextension on detecting .js file update.

• L41-57: Launch Jupyter notebook server via TornadoBridgeApp with the main IO loop of the kernel pro-
cess.

• L78-81: The definition of an app that installs the nbextension.

Tip: This example uses NBExtensionInstaller to install the Jupyter nbextension. You can define a job that
executes jupyter nbextension install --overwrite instead. If you do so, be sure to set pass_env
= ["PATH"] in the kernel section if Jupyter is installed in a virtualenv.

Note: The source package of Jaffle contains example projects in examples directory. You can see the latest version
of them here: https://github.com/yatsu/jaffle/tree/master/examples

A Jupyter extension example is here: https://github.com/yatsu/jaffle/tree/master/examples/jupyter_ext

1.5.5 Overwriting the Configuration

You might want to add jaffle.hcl to your source code repository to share it within your team. At the same time,
you might want to run Jaffle with your own customized log filtering. Editing the same jaffle.hcl is hard and it
may cause an accidental repository commit. Jaffle provides the following two features to overwrite and customize the
base configuration.

1. Merging multiple configurations

2. Setting variable from command-line

1.5. Cookbook 31

https://pytest.org/
https://github.com/yatsu/jaffle/tree/master/examples
https://github.com/yatsu/jaffle/tree/master/examples/jupyter_ext

Jaffle Documentation, Release 0.2.1

examples/tornado_spa_advanced is the example which demonstrates them.

Merging Multiple Configurations

You can provide multiple configuration file to jaffle start. For example:

$ jaffle start jaffle.hcl my_jaffle.hcl

Jaffle read the first file and then merges the other files one by one. Maps are merged deeply and other elements are
overwritten.

Let’s say you have this jaffle.hcl.

1 variable "watchdog_log_level" {
2 default = "info"
3 }
4

5 app "watchdog" {
6 # ...
7 logger {
8 level = "${var.watchdog_log_level}"
9 }

10 # ...
11 }

And this my_jaffle.hcl.

1 variable "watchdog_log_level" {
2 default = "debug" # overwrite "info" => "debug"
3 }

The configuration will be merged as follows.

1 variable "watchdog_log_level" {
2 default = "debug"
3 }
4

5 app "watchdog" {
6 # ...
7 logger {
8 level = "${var.watchdog_log_level}"
9 }

10 # ...
11 }

Please refer to the Merging Multiple Configurations section of the jaffle start Command Reference.

Setting Variable from Command-line

You can provide variables from command-line. The example shown in the previous section can be executed with
debug log-level as follows.

$ J_VAR_watchdog_log_level=debug jaffle start

You can also set it by --variables option.

32 Chapter 1. Screenshot

https://github.com/yatsu/jaffle/tree/master/examples/tornado_spa_advanced

Jaffle Documentation, Release 0.2.1

$ jaffle start --variables='["watchdog_log_level=debug"]'

Please refer to the variable document.

Note: The source package of Jaffle contains example projects in examples directory. You can see the latest version
of them here: https://github.com/yatsu/jaffle/tree/master/examples

1.6 Troubleshooting

1.6.1 Debug Logging

--debug option enables the debug logging of Jaffle itself.

$ jaffle start --debug

Each app has its own log-level setting. You can set it in jaffle.hcl.

app "myapp" {
...

logger {
level = "debug"

}
}

You can also set the log-level using a variable like this.

variable "myapp_log_level" {
default = "info"

}

app "myapp" {
...

logger {
level = "${var.myapp_log_level}"

}
}

You can switch the log-level by providing the value as an environment variable.

$ J_VAR_myapp_log_level=debug jaffle start

The command-line argument --variables is also avilable to do the same thing.

$ jaffle start --variables='["myapp_log_level=debug"]'

1.6.2 Jaffle Console

jaffle console allows you to open an interactive shell and attaches the session into the running kernel. You can
inspect or set variables of running apps in it.

1.6. Troubleshooting 33

https://github.com/yatsu/jaffle/tree/master/examples

Jaffle Documentation, Release 0.2.1

$ jaffle console my_kernel

1.7 Version History

1.7.1 0.2.1 (May 20, 2018)

• Fix: String interpolations in app options are not evaluated

1.7.2 0.2.0 (May 16, 2018)

• Now String interpolations are evaluated at runtime instead of on loading the configuration

• Add functions jq_all() and jq_first() and their aliases jq() and jqf()

• Change environment variable prefix T_VAR_ to J_VAR_

• Simplify BaseJaffleApp I/F

• Improve Tornado app stability on syntax errors and exceptions raised in start()

• Fix hidden Tornado log messages

1.7.3 0.1.2 (May 8, 2018)

• Add fg(), bg() and reset() function

• Fix errors on starting/stopping threaded Tornado app

1.7.4 0.1.0 (May 6, 2018)

• Initial release

1.8 Related Work

Watchdog Python API and shell utilities to monitor file system events. Jaffle depends on it.

pytest-testmon pytest plugin to select tests affected by recent changes. It looks code coverage to determine which
tests should be executed, whereas Jaffle uses simple pattern mapping.

pytest-watch Continuous pytest runner using Watchdog, which also supports notification, before/after hoooks and
using a custom runner script. It executes pytest as a subprocess.

Foreman Procfile-based process manager.

coloredlogcat_py and pid_cat Android logcat modifier. Jaffle’s log formatter was inspired by them.

34 Chapter 1. Screenshot

https://github.com/gorakhargosh/watchdog
https://github.com/tarpas/pytest-testmon
https://github.com/joeyespo/pytest-watch
https://github.com/ddollar/foreman
http://jsharkey.org/logcat/
https://github.com/JakeWharton/pidcat

Jaffle Documentation, Release 0.2.1

1.9 Developers Guide

1.10 API

1.10.1 jaffle.app.base

BaseJaffleApp

class BaseJaffleApp(app_conf_data)
Base class for Jaffle apps.

completer_class
The completer class for the interactive shell. It is required only if the app supports interactive shell.

lexer_class
The lexer class for the interactive shell. It is required only if the app supports interactive shell.

classmethod command_to_code(app_name, command)
Converts a command comes from jaffle attach <app> to a code to be executed.

If the app supports jaffle attach, this method must be implemented.

Parameters

• app_name (str) – App name defined in jaffle.hcl.

• command (str) – Command name received from the shell of jaffle attach.

Returns code – Code to be executed.

Return type str

execute_code(code, *args, **kwargs)
Executes a code.

Parameters

• code (str) – Code to be executed. It will be formateed as code.format(*args,
**kwargs).

• args (list) – Positional arguments to code.format().

• kwargs (dict) – Keyward arguments to code.formmat().

Returns future – Future which will have the execution result.

Return type tornado.gen.Future

execute_command(command, logger=None)
Executes a command.

Parameters

• command (str) – Command to be executed.

• logger (logging.Logger) – Logger.

Returns future – Future which will have the execution result.

Return type tornado.gen.Future

execute_job(job_name)
Executes a job.

1.9. Developers Guide 35

Jaffle Documentation, Release 0.2.1

Parameters job_name (str) – Job to be executed.

Returns future – Future which will have the execution result.

Return type tornado.gen.Future

Utility Functions

capture_method_output(method)
Decorator for an app method to capture standard output and redirects it to the logger. stdout and stderr are
logged with level INFO and WARNING respectively.

Parameters method (function) – Method to be wrapped.

36 Chapter 1. Screenshot

CHAPTER 2

Source Code

GitHub repository: yatsu/jaffle

37

https://github.com/yatsu/jaffle

Jaffle Documentation, Release 0.2.1

38 Chapter 2. Source Code

CHAPTER 3

Bugs/Requests

Please use the GitHub issue tracker to submit bugs or request features.

39

https://github.com/yatsu/jaffle/issues

Jaffle Documentation, Release 0.2.1

40 Chapter 3. Bugs/Requests

CHAPTER 4

License

Jaffle is available under BSD 3-Clause License.

This web site and all documentation are licensed under Creative Commons 3.0.

41

https://github.com/yatsu/jaffle/blob/master/LICENSE
https://creativecommons.org/licenses/by/3.0/

Jaffle Documentation, Release 0.2.1

42 Chapter 4. License

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

43

Jaffle Documentation, Release 0.2.1

44 Chapter 5. Indices and tables

Python Module Index

j
jaffle, 35
jaffle.app.base, 35

45

Jaffle Documentation, Release 0.2.1

46 Python Module Index

Index

B
BaseJaffleApp (class in jaffle.app.base), 35
bg() (in module jaffle.functions), 12

C
capture_method_output() (in module jaffle.app.base), 36
command_to_code() (jaffle.app.base.BaseJaffleApp class

method), 35
completer_class (BaseJaffleApp attribute), 35

E
env() (in module jaffle.functions), 11
exec() (in module jaffle.functions), 12
execute_code() (BaseJaffleApp method), 35
execute_command() (BaseJaffleApp method), 35
execute_job() (BaseJaffleApp method), 35

F
fg() (in module jaffle.functions), 12

J
jaffle (module), 35
jaffle.app.base (module), 35
jq_all() (in module jaffle.functions), 13
jq_first() (in module jaffle.functions), 13

L
lexer_class (BaseJaffleApp attribute), 35

R
reset() (in module jaffle.functions), 12

47

	Screenshot
	Installation
	Commands
	Configuration
	Jaffle Apps
	Cookbook
	Troubleshooting
	Version History
	Related Work
	Developers Guide
	API

	Source Code
	Bugs/Requests
	License
	Indices and tables
	Python Module Index

